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A new procedure is described for the design of antenna reflector structures for
improved performance when subjected to the operational gravity loading. The
design objective is to reduce the difference in pathlength of the RF energy beam
that is reflected from the deformed surface with respect to the pathlength of the
beam from a perfect paraboloidal surface. A virtual work formulation is used to
state this objective in terms of the bar areas that compose the structure, which
become the design variables. A special application of the Lagrange multiplier tech-
nique defines preferential redistributions of the design variables to improve per-
formance. Improvements are developed subject to a primary constraint on total
structure weight and additional practical side constraints. Design examples show
efficient and effective applications of the described procedure.

l. Introduction

This article describes the mathematical procedure, im-
plementation, and results of a computer program for
parabolic antenna structure design to improve perform-
ance for gravity loading.

Performance of an initial, or preliminary, design can
be improved by controlling the surface distortions caused
by environmental loading. This loading is either random,
such as results from wind and temperature, or determin-
istic from the effect of gravity. The gravity load results
from the weight and the change in direction of the weight
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vector relative to the structure with changes in antenna
elevation attitude. Within these two classifications, only
the gravity loading is both omnipresent and predictable,
and it also tends to be the most significant with respect
to performance. Therefore, design of the structure to con-
trol gravity loading distortions is a logical and feasible
approach towards performance enhancement.

Il. Related Background Research

In the last decade there has been substantial effort and
literature describing diverse approaches in the field of
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structural design. This work typically is classified within
the technology of structural optimization, Much of this
background research, however, has only indirect bearing
on reflector structure design or upon the procedures to
be described here.

Structural optimization has most frequently considered
design for minimum structural weight (Ref. 1), subject to
various primary behavioral constraints (such as stress,
buckling, displacement) and side constraints (such as
fabrication requirements). Here we will consider the re-
flector structure problem as a design for improved per-
formance, rather than minimum weight. The structure
weight will be the primary constraint and the behavioral
constraints will be side constraints.

A special requirement, which is not usually considered
for static loading, is that the loading should not be treated
as invariant. This is necessary because the weight of the
structural components, which is significant, is redistrib-
uted during design. Furthermore, instead of examining a
limited number of design loading cases, reflector design
is concerned with an infinite set of loadings in which the
orientation of the gravity loading vector changes over a
continuous range of antenna elevation attitudes.

An important background idea relating to reflector
design is Von Hoerner’s concept of homologous design
(Ref. 2). In this, the design is established to make the
deformations under loading conform to a parabolic sur-
face. A homologous design, however, is not always achiev-
able. In our approach, although we recognize and employ
related concepts, no directed attempt is made toward
achieving the perfectly homologous design.

Von Hoerner also supplies one of the relatively few
procedures for static design which include variability of
loading. This effect has also been considered in Ref. 3
with design for a minimum-weight objective in the pres-
ence of deflection constraints. Variability of loading is
inherent in the relatively virgin field of design for dynamic

constraints, and prevalent approaches are surveyed in
Ref. 4.

Other design optimization techniques that are the most
closely related to the procedures that will be used here
are described in Refs. 5, 6, and 7. These procedures adopt
optimality criteria for stress as a constraint and incorporate
virtual work formulations to express displacements as
other constraints. In particular, Gellatly and Berke (Ref. 6)
show that the Lagrange multiplier technique is effective
in developing design improvements for practical struc-
tures with realistic numbers of variables and degrees of
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freedom. Kicher (Ref. 8) provides a comprehensive de-
scription of the application of the Lagrange multiplier
within structural design.

lll. Present Approach

The approach is to develop a mathematical definition
of the design objective by means of a virtual work formu-
lation. The objective function is then used with a special
application of the Lagrange multiplier technique to de-
velop an improved design. Since the design technique
employed entails approximations, it is necessary to pro-
ceed iteratively towards the final design. The cyclic steps
repeated during the ijterations are analysis of the current
design (mathematically “exact”) and development of a
preferential design (mathematically “inexact”) from the
analysis. Most of the prevalent structural design ap-
proaches are also iterative in this same way.

Mathematical derivation of the objective is founded
upon the recently developed “rigging angle” concept
(Refs. 9 and 10). This concept implies that the gravity
loading at the so-called “rigging angle” attitude is com-
pensated by adjustment of surface panels and the loading
at other attitudes is effectively the net loading in moving
away from the rigging attitude.

IV. Problem Formulation

A convenient measure of performance for design is the
root mean square of half the difference in pathlength of
the RF energy beam in traveling from a deformed reflec-
tor surface to the focal point compared with the path-
length from a surface that is a perfect paraboloid. The
reflector surface of interest is equivalent to an infinite set
of points for which pathlength differences exist; in practice
the surface is replaced by a finite set of “target” points
which are taken to be a representative sample of the
entire set.

Accordingly, minimization or reduction of the mathe-
matical expression for this half pathlength difference for
gravity loading is taken to be the design objective func-
tion. The design variables are the cross-sectional areas of
the individual bar members that compose the typical
space-truss type of reflector structure. The primary con-
straint is a prespecified invariant total structure weight.
Side constraints of minimum member sizes can be speci-
fied to preclude overstress and buckling. Additional con-
straints can be imposed to restrict the numbers of different
member sizes. This last constraint is for fabrication econ-
omy and simplification. Tt is enforced by assigning par-
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ticular members to groups that are required to have
common sizes.

The foregoing definitions of objective function, design
variables, and constraints categorize this as a problem of
optimum design. Effectively, the problem is to redistribute
a fixed amount of structural material to obtain an admis-
sible design with improved performance. Here, the word
“improved” is a realistic replacement for the word “opti-
mum.” The replacement is made because the (global)
optimum is often undefinable, unachievable by direct pro-
cedures, or does not justify the undue effort that could be
spent in the achievement.

This problem statement is essentially the same as for the
Parabolic Antenna Reflector Design System (PARADES)
program (Ref. 11). Here, however, we will describe a
parallel in-house JPL effort that uses a different mathe-
matical attack and a computer program that, although
decidedly effective, is considerably less complex and, con-
sequently, operates within a narrower scope.

V. Mathematics of Design Procedure

The improved design is developed by employing the
virtual work principle to express an objective function
stated in terms of the design variables and then using the
Lagrange multiplier method to find new values of the
design variables that improve the objective. Before doing
this, it is helpful to describe the associated reflector sur-
face geometry.

A. Reflector Geometry

The coordinate system used is shown in Fig. 1. The
figure shows an antenna at a particular elevation attitude
angle «. An X-Y-Z Cartesian coordinate system with
origin at the paraboloidal vertex is defined. The Z-axis is
the focal axis and the Y-Z plane is usually a plane of sym-
metry. The gravity loading is shown resolved into com-
ponents parallel to the Y and Z axes.

The pathlength geometry relationship is shown dia-
grammatically in Fig. 2. Solid line V-G-C represents the
original surface and the broken line represents the de-
flected surface. Target point G on the original surface is
shown as deflected to point D. An incident ray parallel to
the focal axis is shown crossing the aperture plane at A
and is reflected at D to the focal point. With respect to
the original surface, an alternative ray is shown to cross
the aperture plane at B and then to be reflected at C to the
focal point along the path C-D, Consequently, from the
figure, it can be seen that the pathlength difference for
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these two rays is the sum of the distances from E to C and
from C to D. The component of the deflection normal to
the surface is indicated by the dimension dn.

B. Virtual Work Principle

For practical purposes, and within minor approxi-
mation, the reflector structure can be considered as a
framework of m one-dimensional bars, each of which is
completely characterized by its area A, length L, elastic
modulus E, and its density. For simplicity, and consistent
with practical applications, assume that the modulus and
density are the same for all bars. Let the structure be sub-
jected to a real external loading vector {P} and let {S} be
the associated vector of internal forces (stress resultants).
In addition, define a dummy single load D of unit magni-
tude applied in a specified direction at one particular node
of the structure and let {U} be the associated internal
force vector. Then, from the principle of virtual work,

1.5 = 2 [(S:Li)/(AE)] - U; (1)

where § is the displacement of the structure at this node
in the direction of D caused by the real load. In Eq. (1),
the term on the left is the virtual external work of the unit
load moving through the real displacement §. The sum-
mation on the right is the internal virtual work expressed
as the product of the real extension of each bar and the
internal force caused by D. For a linearly elastic structure,
Eq. (1) can be extended by superposition to represent the
sums of the squares of the half pathlength difference of a
set of surface target points from a perfect paraboloid. To
do this, note that the half pathlength difference of a typi-
cal target point can be expressed as (Ref. 12)

p=7v:"dn (2)

where y. is the direction cosine of the surface normal with
respect to the reflector focal axis and dn is the component
of distortion normal to the surface. Then, in Eq. (1), apply
the unit load normal to the surface, and the summation on
the right will give 8 on the left equal to dn. Furthermore,
replace the unit dummy load by a load normal to the sur-
face of magnitude

D =+y%«dn (3)

Then it follows that Eq. (1) will give the square of the
half pathlength difference at this target point as follows:

o= yiednr = 3 (SUiL:)/(AE) ()

i=1
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where each U; is the internal force of the single dummy
load yZdn. Finally, apply a dummy loading vector {D}
that contains one load for each of n surface target points,
each load applied normal to the local surface, with magni-
tude computed according to Eq. (3). Then by superposi-
tion it follows that the sums of squares of half pathlength
deviations SS are given by

SS = {p}t{p} = % (S:UiLs)/(AE) (5)

in which each U; is the internal force for loading vector
{D). Finally, the rms half pathlength difference for the
real loading is

rms = (SS/n)*% (6)

Consequently, a reduction of the objective function
(Eq. 5) results in reduction of the rms half pathlength
differences (Eq. 6).

C. Objective Function

We will give a brief summary of pathlength difference
and rigging angle relationships derived in Refs. 9 and 10.
It was shown there for a linearly elastic structure that the
displacements of the target set of points for two particular
loading conditions provide sufficient information for the
computation of the sums of squares of the half pathlength
differences at any elevation attitude of the antenna. With
reference to Fig. 1, the two required loading vectors,
derived from the weight of all of the structural members
plus supported non-structural components, are:

{P,} = loading vector for weight loading applied paral-
lel to the reflector Y-axis.

{P.} = loading vector for weight loading applied paral-
lel to the reflector Z-axis.

and let {u,}, {u.} be the associated displacement vectors
for the set of target points. Note that the structural nodes
associated with the displacement vectors are a subset of
the nodes associated with the loadings.

Furthermore, assume that at a particular elevation
angle vy, the surface is adjusted to compensate the gravity
loading deflections. This angle is called the “rigging angle”
and defines the elevation attitude at which the surface is
ideally a perfect paraboloid. At any other elevation angle
«, the net displacement is therefore:

{u} = {u,) + {{u} (M)
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where, as can be seen from Fig. 2,

n = COSy— COs«

(8)

{=siny —sina

In practice, it is appropriate to consider the pathlength
differences with respect to an alternative paraboloid that
best fits the data. The alternate paraboloid is defined by a
maximum of six “homology” fitting parameters as follows:

H, = vertex shift parallel to the X axis
H, = vertex shift parallel to the Y axis
H, = vertex shift parallel to the Z axis
§, = rotation about the X axis
g, = rotation about the Y axis
K = focal change parameter = (original focal length/

new focal length) — 1

For structures and loading symmetric about the Y-Z
plane, the parameters H, and 6, are zero. The focal change
parameter K is justified if the antenna has a dynamically
adjustable focal point.

The following additional terms are defined:

{py}, {p-} = half pathlength differences vectors from the
best fitting paraboloid for the correspond-
ing loadings.

SS, = sums of squares of half pathlength differ-
ences for Y-loading = {p,}? {p,}

SS, = sums of squares of half pathlength differ-
ences for Z-loading = {p.}? {p.}

Sye = {py}* {p:}
The sum of the squares of the half pathlength differ-

ences SS. from the best-fitting paraboloid at elevation
angle « can be expressed as

{p}' {p} =S5, + 88, + & {py}' {p:}  (9)

or

SSq = 9288, + &288; + 29£S,- (10)
The rms half pathlength difference is
(mls)a - (SS()[/'”)]/2 (11)

where n is the number of points in the target set. In
practice it is customary to incorporate weighting factors
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in Egs. (9) and (10) to represent the relative importance
(such as the local tributary aperture area) of each of the
points in the target set. For simplicity of presentation, it
is assumed here that all points are of equal weight.

Here, during the design procedure, we will choose the
rigging angle to make the pathlength differences at the
horizon and zenith attitudes equal. Although there are
other choices that are logical, this will result in the small-
est peak rms difference over the entire elevation attitude
range. Then a simple computation gives the rigging angle
directly as follows:

y=¢ e (12)
where
o (B
g = tan <A>
C
o= o (G ) (19)

and the terms A, B, C in Eq. (13) are

A = 28S, — 2S,.
B = 2SS, — 25, (14)
C =SS, —SS,

Then, because the computation of rigging angle will
produce equal rms values at horizon and zenith, either of
these two attitudes presents a suitable design loading case
for reducing the extreme rms variation over the entire
elevation range. It also has been found that the rigging
angle is reasonably insensitive to change with respect to
alternative designs with moderate differences, which is
helpful during iterative design because the rigging angle
computed for a previous design is taken as the rigging
angle for development of the following design.

Then, from the foregoing, the infinite spectrum of load-
ing cases that result from the continuous range of eleva-
tion attitudes from horizon to zenith is effectively replaced
by a single design loading case. Therefore for design the
real loading could be formed as

{P} = {P,} + {{P:} (15)
However, it is preferable to apply {P,} and {P,} sepa-

rately to determine the associated displacement and half
pathlength vectors. Following this, a typical load D of
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the dummy loading vector {D} is computed to have the
magnitude

Dy =y, (9py + Lp2) (16)

Equation (16) is evaluated at the kth target point
and the load is applied normal to the surface at the
point. Equation (16} follows from Egs. (2) and (3) and
the assumed linearity of displacements with respect to
loading.

To use either the horizon or zenith attitudes as the
design loading condition, « is set equal to O deg or 90 deg,
respectively, in Eq. (8), and Eq. (7) is used in the compu-
tation of {S} for Eq. (5). The displacements for the load-
ing {D} (Eq. 16) are used in the computation of {U} for
Eq. (5).

D. Design Algorithm

For design, we consider that the m bars of the structure
are treated as a set of g bar groups, in which the ith group
contains C; bars of common area A;. Consequently, the
design variables become the group areas rather than the
individual bar areas. There is no loss of generality in this,
since a group can consist of C; = 1 bar. The group length
L; is defined as the total length of bars in the group, or

J=1

Also define a force term F; for the ith group as
«;
Fi = ]./LI 2 S]'U]'Lj (18)

Therefore, the virtual work W; of the internal bar forces
for the ith group is

W; = (LiF;)/(AE) (19)
For a structure comprising bars of the same material the
constraint on total structure weight can be replaced by a

volume constraint. Let V), be the assigned volume of the
bars; then the volume constraint is

S LA~ V,=0 (20)
i=1

Then, considering only the constraint of Eq. (20), we form
the function G, which consists of the objective function
augmented by the constraint equation times the Lagrange
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multiplier A. The objective function is formed by summing
Eq. (19) over all the bar groups, thus

G=1/E 20 (LiF3)/A; + ) (é L:A; — Vp) (21)

i=1 i=1

Taking the partial derivative of G with respect to A; and
setting this equal to zero results in g equations that will
ideally lead to the optimal values of the design variables.
The equations are of the following type:

0= —(LiF;)/(A3E) + AL; (22)
Solving Eq. (22) for each A;, we obtain the new value

A, =[F/OE)% =123 - -,g (23)

Using Eqgs. (23) in Eq. (20), A can be found from
(AEy% =1/V, 2 L~ F% (24)

E. Restrictions and Modifications for Design Algorithm

Subject to restrictions that will be discussed subse-
quently, Eq. (23), in conjunction with Eq. (24), can be
used to determine new values of the design variables A;
that will minimize the objective function for a constant
weight of structural members. Nevertheless, the restric-
tions on the use of these equations are significant and
require special modifications in the application.

The restrictions are:

(1) In differentiating Eq. (21), it was assumed that F;
is not a function of A;. This is strictly true only
in the case of statically determinant structures.
The typical antenna structure contains a substantial
number of redundant bars, so that the foregoing
derivations are only approximately true.

(2) A side constraint could be violated by choosing A;
according to Eq. (23). Side constraints that are
applicable are specific minimum areas to preclude
stress or buckling failure. Another type of side
constraint can be imposed to prevent unduly large
changes with respect to the bar sizes of the preced-
ing design. This will be called a “step-size ratio”
limit and will be explained in conjunction with
restriction 1.

(3) The ith group can be specified as a group for which
no size changes are permitted.
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(4) The F; term for a particular group could be nega-
tive. Therefore, Eq. (23) becomes meaningless for
real variables.

The first restriction entails an approximation in develop-
ing a new design. This approximation, plus the effects of
bar grouping and variation of load distribution, are the
only parts of the procedure that appear to be mathe-
matically “inexact.” The consequences are the require-
ment for an iterative design procedure in which the design
approximations are corrected iteratively from cycle to
cycle. Nevertheless, the magnitude of the approximations
and corrections needed can be controlled to some extent
by defining a limiting change in the design variables per-
mitted from cycle to cycle. This step size ratio change R is
employed to define the following restriction:

where A; is determined from Eq. (23) and A, is the design
variable at the beginning of the cycle.

If the inequality is violated, the new design variable A;
is established temporarily as follows:

Ai=A;(1+ Rsgn(A; — A)) (26)

The modification applied in conjunction with the sec-
ond restriction is to test each A; computed from Eq. (23)
or A; computed from Eq. (26) against the specified mini-
mum area and to select the most critical from the test. The
modification for the third restriction is to exclude the
group from redesign.

The fourth restriction is accounted for by a major
change in the design algorithm. The groups are identified
according to whether or not F; is positive or negative.
When positive, the group is treated as described above.
When negative, objective and constraint are interchanged
in the Lagrange multiplier formulation. Now the con-
straint becomes the internal virtual work for the positive
groups and the objective is to minimize the volume of the
negative groups. The constraint is taken to balance the
positive virtual work as

8S, —1/E-Z(L;*F;)/A; =0 (27)

In Eq. (27), the summation is taken over only the groups
with negative F;, and SS, is the predicted objective func-
tion resulting from new sizes of the bars with positive F;.

It can be shown from Egs. (23) and (24) that

SS, = AV, (28)
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Then by reformulating the Lagrange multiplier algo-
rithm, we find for the bars with negative F,

A; = (=F;#- S [(—F)%- Li]/(SS,- E)  (29)

Ideally, Eq. (29) would provide a zero objective function
and structure of smaller volume than specified. However,
in practical applications, the first two restriction cate-
gories preclude the ideal situation.

It can be seen that all of the restrictions and modifica-
tions, except for the fourth, cause violations of the con-
stant volume constraint. This is overcome in the execution
of the design algorithms by a procedure that maintains
the volume for each design and also develops the design
closely in accordance with the foregoing theory.

Before applying the Lagrange multiplier algorithm to
the design groups, their F terms and volumes are identi-
fied as “positive,” “negative,” or “excluded.” Then, within
each cycle, the first operation is to apply Eq. (23) to the
positive groups. This can result in some of the groups
being bounded from either above or below. Lower bounds
are recognized, but upper bounds from this operation are
ignored.

The positive volume is then adjusted by removing the
volume of lower-bounded groups and adjusting the aug-
mented objective function (Eq. 21) accordingly. The algo-
rithm is re-applied, and as the result some groups will no
longer be at their upper bounds and some new groups
may become lower-bounded. Again, lower bounds are
recognized, upper bounds ignored, and the procedure is
repeated until no new lower bounds appear.

After this, Eq. (29) is applied exactly once to the nega-
tive groups. Since the result of this application will per-
mit new volume to be assigned to the positive groups,
the augmented objective function is reconstructed and
Eq. (23) is applied one more time.

If any unbalanced volume remains after this, it is dis-
tributed by proportion to positive and negative groups in
a manner that will not violate any of the constraint bound-
aries. Although this results in repeated applications of the
design algorithms during each design cycle, the arith-
metic is performed on one-dimensional vectors of size
equal only to the numbers of design variables. Accord-
ingly, execution of the design algorithms proceeds rapidly
and expends only a relatively small proportion of the com-
putation time for each cycle.
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VI. Example Applications
A. Computer Program

A computer program has been developed to implement
these procedures. In its current form, it is a prototype of
a larger-capacity program that is intended to have design
capability for antenna structures in the 64-m-diameter
class or larger. At present, problem size is restricted to the
in-core capacity of the Univac 1108, Exec § Computer.
Nevertheless, as will be seen, reasonably sized demonstra-
tion problems can be processed.

The program logic is designed especially for the prob-
lem at hand and takes advantage of favorable related
features wherever possible. This, in conjunction with the
present in-core computational feature, results in rapid
execution of numerous design iteration cycles. For exam-
ple, the execution time to design the sample structures
that will be described later has been compared with
the -execution time to perform a verification static load-
deflection analysis of the same structures with both the
NASTRAN and SAMIS structural analysis programs. The
design program has been found to generate complete
designs, executing about ten iteration cycles within the
same or less time required by either of these two pro-
grams. The additional time required following both analy-
sis programs for a post-processor to perform the rms
pathlength difference computations is not included in this
comparison.

The primary size restriction of the design program is
the size of the structural stiffness/decomposition. This is
stored as a rectangular matrix with the number of rows
equal to the number of elastic degrees of freedom and
the number of columns equal to the matrix bandwidth.
A problem size of 260 degrees of freedom with a band-
width of 75 can be designed using one 65K core bank.
The program is devised to recognize externally developed
nodal sequencing definitions to control the bandwidth.
The bandwidth definition is used only for storage arrange-
ment and not for the stiffness matrix decomposition algo-
rithm. A conventional LDU algorithm is modified to avoid
the computations associated with the empty terms within
the band during matrix decomposition.

The program user establishes the step size ratio R and
the maximum number of associated iterations permis-
sible. If the design objective converges to within a 1%
change before this number of iterations is reached, this
sequence of iterations is terminated. The best design from
this sequence is identified as the starting point for new
sequences of iterations with reduced step sizes. At pro-
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gram termination, properties of the best design attained
are punched on cards for a restart or for execution on
another program.

Much of the data input is in NASTRAN format and an
existing NASTRAN data deck will require only a limited
amount of additional preparation for the design program.
However, the only type of element connections and prop-
erties recognized are the NASTRAN CBAR, PBAR, and
CONROD definitions.

B. Sample Problems

1. Baseline structure. The hypothetical antenna struc-
ture shown in Fig. 3 was used as a basis for computer
program development and evaluation. This is called the
“baseline structure” and represents a highly simplified
mode! of a practical reflector. It contains most of the
essential features of typical reflector frameworks, but the
surface and structure have been subdivided into a rela-
tively coarse grid to expedite the computations.

There are six identical ribs spaced at 60-deg increments,
which are interconnected by the customary hoop and
diagonal members. Three supports are shown at nodes
201, 203, and 205. The plane of the supports is taken to
be capable of rotation about the X-axis to vary the eleva-
tion attitude.

The Y-Z plane is a plane of symmetry. There are a total
of 19 nodes, with three translational degrees of freedom
permitted for each node. Therefore, excluding supports,
there are 48 degrees of freedom in the model. Surface
target nodes are 101, 301-306, 401-406, which provide 13
points for rms computation. There are six framing mem-
bers of identical topology and similar structural function
in each of ten different design groups (five rib-member,
three hoop-member, two diagonal-member), resulting in
a total of 60 members.

The design program started from an initial structure
in which the design variables for all groups were the
same. All groups throughout the procedure were con-
strained to minimum area equal to one quarter of the
starting area. The external nonstructural weight is equal
to about twice the weight of the structural members and
is applied to simulate loading of nonstructural surface
panels.

2. Validation structure. This is a second structure estab-
lished for program evaluation and is patterned closely as
a coarse-grid approximation to the analytical model of an
existing 26-m-diameter antenna. The validation model
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- contains about half as many radial ribs and circum-

ferential hoop rings as the prototype. It also comprises
members that simulate quadripod and counterweight
structures and includes associated subreflector and ballast
loads. The members of these components, since they are
highly idealized, are placed in groups that are excluded
from the design process. The typical inner “square girder”
reflector support systems are also simulated.

Member sizes for the starting design were established
to have cross section area distributions in similar propor-
tion to the prototype. Minimum sizes were established
to be approximately equal to one quarter of the initial.
Because of symmetry with respect to the Y-Z plane, only
one-half of the structure is considered. This half-section
contains seven radial ribs and four rings, two legs of a
quadripod, and the relevant portions of a counterweight
and square girder. The structure is supported at the
square girder by simulated elevation axis and ball-screw
jack attachments.

The analytical model contains 83 nodes, 47 surface
target points for rms computation, and 282 bars that are
assigned to 56 design groups. Four groups are excluded
so that 52 design variables are considered. There are 249
elastic degrees of freedom in the model, of which 26 are
constrained, either by virtue of support or symmetry. The
external nonstructural weight, which is predominated by
the counterweight ballast simulation, is about three times
that of the structural members. No sketch is included here
to further describe the model.

VII. Results and Conclusions

Figure 4 shows the results of design iterations for the
baseline structure, One sequence of 11 iterations with
R = 0.25 is shown. The best rms value is obtained at cycle
number 9, and the rms value here is about 55% of the
initial. The horizon attitude loading was the design case,
with rigging angle established to equate the zenith rms
to the horizon rms. It can be seen here that the iterations
proceed smoothly towards the best design.

The design for this problem was also run with larger
values of R for initial sequences of five cycles followed by
second sequences for which R was reduced. The results
were considerably more erratic, but the effectiveness of
the final designs thus obtained were about the same. In
evaluating the design improvement shown, it should be
noted that the objective is actually the sum of squares and
not the rms values that are plotted. Therefore the final
rms ratio of 55% is equivalent to a ratio of 30% on the
mathematical design objective.
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The iterative results obtained for the validation struc-
ture are shown on Fig, 5. Three iteration sequences are
indicated in which up to four new designs per sequence
were specified with R = 0.60, 0.24, and 0.12. The hori-
zontal scales for the cycle numbers are in the approximate
proportions of the related step size ratios.

As for the baseline structure, the horizon attitude was
the design loading configuration. The rms value at the end
of the fourth design of the first sequence was 46% of the
starting value. The best design for the second sequence
was found at its third cycle, equal to 36% of the initial.
The third sequence achieved 32% of the initial rms value
at the end of the third iteration and terminated here
because of the convergence criterion (equivalent to %%
change on rms). The 1108 computer execution time for
all of the 11 design iterations plus the starting design
analyses to initiate each sequence was less than 2 min.
Each iteration was executed in about 8 s, and much of this
time was consumed in preparing a substantial amount of
response data and information for output.

It can be seen, especially in Fig. 5, that relatively large
step size ratios tend to produce erratic convergence; the
convergence becomes smoother as the ratio decreases.
Establishing effective ratios appears to be the key toward
most efficient program usage. However, the results of
many other sample design tests for these structures with
different ratios and sequence specifications indicate that
there is no consistently best way to approach all problems.
This became evident for the baseline structure when the
design grouping constraints were relaxed to permit up to
60 design variables. As expected, this relaxation produced
further improvements of the objective. However, the most
significant finding was that in some cases large ratios per-
mitted large undesirable jumps in the convergence and, in
other cases, the design appeared to alternate between two
distinguishable configurations. Notwithstanding the un-
disciplined behavior, some of these problem formulations
were as effective as some of the better-behaved tests with
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smaller ratios. When very small ratios were specified they
led to extremely smooth convergence rates that were not
always particularly effective because of the slow rate of
descent.

Here we attribute this anomalous behavior to the itera-
tion algorithm, as discussed previously with respect to the
restrictions and corresponding modifications for design
application. The consequences of this mathematically un-
satisfactory convergence lie in the number of iteration
cycles required to achieve an effective design. However,
in a practical sense, the difficulty is overcome by the rapid
rate at which the iterations are executed.

The effect of variation of the structural weight distribu-
tion does not seem to impose serious difficulties in obtain-
ing the solution. This was established for the baseline
structure by setting the bar density equal to zero to retain
only the invariant nonstructural weight during the design.
No substantial difference or improvement was observed in
the convergence behavior.

It currently appears that the best way to approach a
new design problem with no a priori knowledge of the
convergence behavior is to establish a primary sequence
with a large step size ratio and then reduce this succes-
sively. This provides the opportunity to find a point near
a worthwhile minimum and to explore the region near this
point more carefully in a subsequent sequence.

Present experience indicates that the reflector design
problem (and possibly many other problems) is charac-
terized by many local minima. It does not seem practical
to explore all of these in an attempt to find the global
optimum, A realistic appraisal of practical difficulties in
structure design appears in Ref. 13. Nevertheless the pro-
gram described here has been demonstrated to be an
effective approach toward achieving a substantially im-
proved design.
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